

Energy Frontier Probes of the Dark Sector and Long-Lived Particles

Juliette Alimena

Cross-Frontier Meeting: Dark Sectors and Light Long-Lived Particles

Snowmass 2021

July 15, 2020

Why look for new long-lived particles (LLPs)?

Standard model particles span a wide range of lifetimes (τ)

LLPs appear in many scenarios beyond the standard model, including the dark sector

LLP Searches

- To make a discovery, look where no one has looked before!
- Wide variety of LLP signatures and strategies
- Often require unusual and innovative techniques at main LHC experiments
- Some challenges:
 - Dedicated triggers
 - Unique object reconstruction
 - Atypical backgrounds
 - Unusual discriminating variables

High-Luminosity LHC

- 14 TeV center-of-mass energy
- About 20 times more data by the end
- Expect up to 200 interactions per proton-proton collision, unprecedented amount of radiation

High pileup: about 200 additional proton collisions per bunch crossing

ATLAS and CMS Upgrades

- Higher geometrical coverage of all subdetectors
- High resolution for all subdetectors
- New L1 track trigger in CMS
- New timing detectors

ATLAS UPGRADE Outer tracker Si Strip RPC in inner most laver +new MDT readout Inner tracker Si Pixel LAr Calorimeter higher granularity in FE anf BE Tile Calorimeter new readout Timing plane HGTD + TDAQ modification to cope with modified detector $\sigma_t \sim 30 \mathrm{ps}$ and higher lumi (including tracking in hardware)

This talk will highlight some LLP projections that take advantage of the upgrades, and identify gaps that could be covered in Snowmass

Muon System Upgrade

- Electronics for L0 trigger in Resistive Plate
 Chambers (RPCs) and Thin-Gap Chambers
 (TGC) will be upgraded to deal with increased
 trigger rate
- Replace Monitored Drift Tube (MDT) front-end readout
- New RPC layer in the barrel

Increases efficiency of RPC triggers from 78% (Run 2) to 96% (HL-LHC)

July 15, 2020 Juliette Alimena

Displaced Lepton Jets at the HL-LHC (I)

Search for long-lived dark photons that decay to displaced muon jets

Developed two new L0 muon trigger algorithms:

1. Sagitta muon trigger:

- Momentum can be misreconstructed for non-pointing muons due to beam spot constraint
- New approach: cut on sagitta of muon trajectory
- Gives ~20% improvement in efficiency

Displaced Lepton Jets at the HL-LHC (II)

2. Multi-muon scan trigger:

- If dark photon is highly boosted, decay muons can be close-by
- New approach: include multiple muon trigger candidates in the same region of interest
- Multi-muon scan improves signal efficiency **up to 7%** with $p_T>20$ GeV

- Run 3 (300 fb⁻¹)
- HL-LHC (3000 fb⁻¹)
- HL-LHC projection includes multi-muon scan trigger improvement
- HL-LHC projection will probe BR(H→2γ_d+X) down to ~1%: much further than Run 2 sensitivity!

MIP Timing Detector (MTD)

- Detector dedicated to precisely measuring the production time of minimum ionizing particles (MIPs)
- 30 ps resolution at the start of the HL-LHC
- Allows to precisely measure vertices in 4D, at 200 PU
- Provides unique opportunity for LLPs

Heavy Stable Charged Particles with the MTD

- Search for heavy, slow-moving, highly-ionizing particles that pass through the detector
- Studied the HSCP β (velocity/speed of light)
 measured with the particle path length and time
 difference between the primary vertex and MTD hits

HSCP

mGMSB benchmark:

If the **coupling** of the stau to the gravitino **is small**, the stau can be long-lived

MTD greatly improves $1/\beta$ resolution

Can estimate the **HSCP mass** from the momentum and β as measured by the MTD

- MTD, 30 ps resolution
- MTD, 60 ps resolution
- no MTD, 1/β resolution from 2016 HSCP analysis

The MTD greatly improves long-lived particle velocity measurements and thus analysis sensitivity

Delayed Photons with the MTD

- Search for LLPs that decay to delayed
 photons + missing transverse momentum
- Photon time estimated using the ECAL and compared to the PV time using the MTD

- Run 3 detector (300 fb⁻¹)
 - 300 ps time resolution in ECAL
- Phase-2 detector without MTD (1000 fb⁻¹)
 - 180 ps time resolution dominated by beamspot uncertainty
- Phase-2 detector with MTD (1000 fb⁻¹)
 - 30 ps time resolution

The MTD greatly improves the sensitivity to LLPs with short lifetimes and large masses

Disappearing Tracks at the HL-LHC

 Search for charged LLPs that decay to neutral particles with a disappearing track signature

Pure wino LSP scenario

- Truth-level analysis with parameterized detector response
- Select events with short tracks, no leptons, and large missing transverse momentum
- Large gain in disappearing track sensitivity at the HL-LHC with 3 ab⁻¹

Triggering on Displaced Jets

- Search for long-lived scalars that decay to displaced jets
- Many displaced tracks <u>currently missed</u> at trigger level, but could be found with L1 track trigger

Enough events for discovery!

Exotic Higgs boson decays to LL scalars:

- Track trigger extension for displaced tracks
- Baseline track trigger

Some Dedicated LLP Experiments

- Besides the more general purpose LHC experiments, there are approved and proposed experiments dedicated to looking for LLPs
- Just a few examples (see more later today):

<u>FASER</u>: searches for long-lived dark photons and similar particles in the extreme forward direction

MoEDAL: searches for monopoles stopped in the beampipe with a SQUID precision magnet

MilliQan: searches for millicharged particles with a detector pointed at the CMS interaction point

MATHUSLA: searches for (very) long-lived weakly interacting neutral particles with a large-volume, air-filled surface detector

LLPs at Lepton Colliders

- Besides future hadron colliders, there are also opportunities for LLPs at future lepton colliders, for example:
 - Compact Linear Collider (CLIC)
 - Future Circular Collider (FCC-ee)
- Lepton colliders have a cleaner collision environment than hadron colliders
 - Possibility of readout without a trigger
 - First layers of pixels could be closer to the interaction point

15

Displaced Vertices at CLIC

- Search for Higgs bosons that decay to longlived particles that decay to b quarks with a signature of displaced, multi-track vertices
- Results with full CLIC_ILD detector simulation
- Use BDT to separate signal from background

Hidden Valley benchmark:

An input variable to the BDT:

Good sensitivity to longlived Higgs bosons in clean environment at CLIC

July 15, 2020 Juliette Alimena Lifetime [p5]

Sterile Neutrinos at ee, pp, and ep Colliders

- Search for sterile heavy neutrinos (aka heavy neutral leptons)
- Systematic study of different possible signatures (prompt and displaced) and sensitivity at various future colliders
- Best sensitivity for heavy neutrino masses M < m_W is obtained from displaced vertex searches at the Z pole run of the FCC-ee

Summary

- Can and should perform a variety of searches for exotic long-lived particles at future colliders
- Showed how LLP searches will benefit from of ATLAS and CMS Phase-2 upgrades and increased physics potential at future hadron collider, as well as some prospects for LLPs at lepton colliders
- More can be done, particularly to explore the LLP potential with the HGCal, with dedicated detectors, and with lepton colliders, for example
 - What else?
- Exotic long-lived particle searches often require non-standard techniques to collect, reconstruct, and analyze the data → <u>different/challenging/FUN!</u>
- Need to be sure we don't miss new physics!